If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12t-t^2=32
We move all terms to the left:
12t-t^2-(32)=0
We add all the numbers together, and all the variables
-1t^2+12t-32=0
a = -1; b = 12; c = -32;
Δ = b2-4ac
Δ = 122-4·(-1)·(-32)
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4}{2*-1}=\frac{-16}{-2} =+8 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4}{2*-1}=\frac{-8}{-2} =+4 $
| 3.50+2x=15.50 | | 6+2x=46.00 | | 3(x+2)=10+3x-4 | | 13^x=1/169 | | 122+3x=197 | | 15+2x=145 | | 4x+5=10+4x | | 1/3x5=6-4 | | 3x-7=7x+8 | | 2x+21=64 | | 4x+3=10x+-15 | | 30=8x-2 | | M+5(m-1)=40 | | 5^2x=62 | | X-6x-9=19 | | 6•(10•k)=6•(k•10) | | r/3-10=-6 | | 3x+x+x/2=90 | | 1/3n-11=5 | | -3(t+7)=0 | | 5x–3(5x+10)–14=82–12x | | 50x-25=0 | | -(m-10)=-9m-10 | | y=820000(1.05)^4 | | 1/2(4x+6)=3x-7/3 | | 84=4x-x | | 50x+49=0 | | x(x+4)=(x+1)2 | | N+(n+1)=91 | | 23-(2x-10)=5x-22 | | a-7=-(7-a) | | 4x+2x+2x-x=35+2x |